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Multiple myeloma (MM) is a cancer of plasma cells
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Primary genetic events:
¢ |GH translocations
¢ Hyperdiploidy

Secondary genetic events:

* Copy number abnormalities
* DNA hypomethylation

* Acquired mutations

Tumour microenvironment -

Shaji K. Kumar et al., Nature Reviews Disease Primers (2017)




Symptoms of multiple myeloma

Impaired

KIDNEY
function

BONE DAMAGE

and resulting pain,
bone loss

Illustration showing the most common site

. . https://en.wikipedia.org/wiki/Multiple myeloma
of bone lesions in vertebrae

https://minajamyelooma.fi/en/multiple-myeloma/symptoms/
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Mechanisms of drugs resistance in multiple myeloma

Mechanism of action Mechanisms of resistance

Proteasome inhibitors (bortezomib, carfilzomib
and ixazomib)

Corticosteroids (prednisone, dexamethasone
methylprednisolone)

Chemotherapeutc agents (alkylating drugs —
melphalan, cyclophosphamide), anthracyclines
(doxorubicines)

Immunomodulatory drugs (thalidomide,
lenalidomide, pomalidomide)

Monoclonal antibodies, (daratumumab,
elotuzumab)

Inhibition of activity of the 26S proteasome;
Inhibition of NF-kB activity; induction of
apoptosis by activation caspase-8 and caspase-
9; downregulates the expression of adhesion
molecules on PCM cells

Induction of apoptosis of PCM cells; reduction
in mitochondrial transmembrane potential

DNA damage; immunostimulatory activity by
inhibiting interleukin-6

Targeting PCM cells in the BM
microenvironment; triggering caspase-8-
mediated apoptosis

Antibody-dependent cellular cytotoxicity,
macrophage-mediated phagocytosis

Upregulation of the proteasomal system; point
mutations of the PSMB5 gene and
overexpression of the proteasome 5 subunit;
increased expression of the MARCKS protein

Functional defect of the glucocorticoid
receptor; overexpression of the oncogenes
FGFR3 and MYC

Up-regulation of P-gp; increased ABCG2
expression; RECQ1 over-expression;
overexpression of Bcl-xL

Downregulation of CRBN expression;
deregulation of IRF4 expression

Downregulation of CD38 expression;
upregulation of CD55 and CD59 on the PCM
cells

Pawel Robak et al., Cancer Treatment Reviews (2018)



Interactions between MM and bone marrow microenvironment
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Single-cell RNA-seq can reveal hererogeneity

o Reveals heterogeneity and
Each cell type has distinct subpopulation expression

Single Cell Input expression profile variability of thousands of cells
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MM heterogeneity and MSC multiple lineage potentials

-> single-cell profiling https://www.lcsciences.com/discovery/applications/transcriptomics
/single-cell-rna-seq-sequencing-service/
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Tolerant to 5nM BTZ

Collaborator: Prof. Zhigiang Liu lab,
Tianjin Medical University, Tianjin, China

In silico analysis




Transcriptome quantification and quality control pipeline

Raw data

condition

CellRanger

64,738 cells
count

Feature-barcode matrices

® MM-1S-BR5
® MM-1S-MSC
® MM-MSC-48h

UMAP2

CellRanger
aggr

Aggregated feature-barcode matrix
(69714 barcodes x 33538 features)

UMAP1

Cell QC
Gene QC

Cleaned feature-barcode matrix
(64738 x 17884)




Co-culture effects on MSC differentiation program?



Subgroup 9 shrinks during MM-MSC interaction

Control Co-culture



Subgroup 9 represents osteogenic lineage MSC

Overlap score (normalized by num. of ref. marker)
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MM-mediated inhibition of MISC ciliogenesis
causes MSC osteoblast differentiation repression

Our collaborator’s previous experiments show that MM cells can inhibit
MSC differentiation to osteoblast by repressing MSC ciliogenesis.

The mechanisms that primary cilium regulates osteoblast differentiation
is known (by receiving extracellular fluid signal and Ca?* signal).

How MM represses MSC ciliogenesis is unclear.



ldentification of differentially expressed cilium-associated genes
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How do MM cells send sighals to repress MSC ciliogenesis?
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Cluster b

|dentification of intercellular ligand-receptor pairs (LRPs)
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interacting_pair secreted receptor_a receptor_b cell_pair
CCL4 _SLC7A1 TRUE FALSE TRUE MM | MSC
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MM - MSC direction LRPs



Co-culture effects on MM proliferation, migration
and drug resistance?
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MM-MSC interaction

Co-culture

Subgroup 7 shows up during




Subgroup 7 generated during MM-MSC interaction
probably represents cancer stem cell (CSC)
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Transition trajectory reconstruction of MM cells
indicates potential reprogramming path of subgroup 7

Benign MM as start point

Subgroup 7

Unknown MM
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Oxygen-consuming MM
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Proliferative MM



ldentification of dynamically expressed genes
along MM transition path to subgroup 7
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Which genes are responsible for the transition process?



MM-MSC interaction shifts MM transcriptome
towards a drug resistant direction

Drug resistance experiment  Pathway enrichment score
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Summary

Osteogenic lineage MSC group shrinks during MM-MSC interaction and
potential mechanisms (cilia-related) regulating this process is inferred.

A MM subtype (subgroup 7) with the characteristics of stem cells nearly only
show up after MM-MSC co-culture. The potential transition path from benign
MM to the stemness MM and potentially responsible genes are identified.

MM subtypes show different drug resistance pathways and MSC can promote
MM drug resistance.

These data characterize interactions between MM and MSC, providing clues
next experiments can follow.
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